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Executive Summary 

This deliverable captures the progress realized within the context of the task 5.2 “Integration 
Layer and Multimodal Indexing” of the ISOLA project. The main focus of the task is the 
development of a service that allows efficient indexing and retrieval of heterogeneous 
information. Apart from that, proper connection to the ISOLA platform is realized which involves 
linking related input and output services. 

Starting with the indexing and retrieval method that is being developed, an extensive study of 
the state-of-the-art methodologies on the domain of multimodal retrieval is realized. In 
particular, this study focuses on hashing methods, because they need less storage and are 
faster due to the use of hash-indexed data. Then, the novel BiasHash approach with a 
multimodal fusion approach is described. BiasHash is a supervised image retrieval method, 
which learns to project images to hash codes using a Bayesian-Ridge Regression framework. 
In addition, it incorporates a late fusion approach for combining hash codes for different 
modalities (including image, time and location) into one unified hash code, which enhances 
the multimodal search procedure. 

In the sequel, the method is evaluated against three publicly available vessel datasets 
(MarDCT, SeaDronesSee and SeaShips) and against the ISOLA dataset. The evaluation on 
the public datasets involves experiments of the BiasHash method, and two other state-of-the-
art methods on these datasets and for different code lengths by using commonly used 
performance metrics. Furthermore, experiments on ISOLA dataset are presented which 
involve visual evaluation of the produced results. From the experimental analysis it is shown 
that BiasHash outperforms the two state-of-the-art methods on all datasets. Finally, from the 
experimental analysis, it is shown that BiasHash outperforms the two state-of-the-art methods 
on all datasets. 

Furthermore, the service is dockerised for reducing the effort and the risk of problems with 
application dependencies. Finally, to be connected to the ISOLA system, a presentation of the 
pipeline including the connection with other ISOLA services (like, face recognition service, 
object detection service and social media analysis service) is presented. The connection 
between services is done via the distributed messaging system Apache Kafka. Then, the data 
are indexed and stored into a non-relational DB, such as MongoDB, which is opted for flexibility 
reasons, as it can handle heterogeneous data. A detailed description of the record of each 
collection from MongoDB and the Kafka messages exchanged between services that concerns 
this service are included. 
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List of Acronyms 

Acronym Meaning 

ACCELI_MISSION Collection name of MongoDB for UAV from mission drone service 
and service’s name for Kafka 

AGAH Adversary Guided Asymmetric Hashing 
AP@k Average Precision at k 
BiasHash Bayesian-Ridge Semantic Preserving Hashing 
CENTRIC_DECISION Decision support name for Kafka 
CERTH_ACT Collection name of MongoDB for data from activity recognition 

service and service’s name for Kafka 
CERTH_OBJ Collection name of MongoDB for data from object detection 

service and service’s name for Kafka 
CSQ Central Similarity Quantization 
DADH Deep Adversarial Discrete Hashing 
DPH Deep Priority Hashing 
GUI Graphical User Interface 
IBM_DRONES Collection name of MongoDB for UAV drones after modifications 

of object detection service and service’s name for Kafka 
IDMG_FACE Collection name of MongoDB for face detection data and service’s 

name for Kafka  
FCMH Fast Cross-Modal Hashing 
FDMFH Fast Discrete Matrix Factorization Hashing 
GSPH Generalized Semantic Preserving Hashing 
HCOH Hadamard Codebook based Online Hashing 
KDLFH Kernel-based Discrete Latent Factor Hashing 
MFB Multimodal Factorized Bilinear 
MTFH Matrix Tri-Factorization Hashing Framework 
LAH Label-Attended Hashing 
LAGNH Lightweight Augmented Graph Network Hashing 
LCMH Linear Cross-Modal Hashing 

LSSH Latent Semantic Sparse Hashing 
OMST_UUV Collection name of data from UUV service and service’s name for 

Kafka 
OMST_UUV Collection name of data from queries of UUV data from decision 

support service and service’s name for Kafka 
PCDH Pairwise Correlation Discrete Hashing 
prec Precision 
prec@k Precision at k 
ReHash Rank-embedded Hashing 
RKHS Reproducing Kernel Hilbert Space 
SePH Semantic Preserving Hashing 
SIMAVI_MOBILE Collection name of Twitter data from social media service and 

service’s name for Kafka 
SPAT Spatial modality 
SSAH Self-Supervised Adversarial Hashing Network 
STH Self-taught Hashing 
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TEMP Temporal modality 
UAV Unmanned Aerial Vehicle 

UUV Unmanned Underwater Vehicle 

VIS Visual modality 

Table 1. List of acronyms. 
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1 Introduction 

The task “Integration Layer and Multimodal Indexing of Heterogeneous Data” (KR07) 
addresses efficient indexing and retrieval of heterogeneous data that are within ISOLA. The 
outcome of this task is a service that is responsible for consuming data from other services, 
processing them accordingly, indexing them and eventually allowing fast retrieval through a 
Graphical User Interface (GUI). The service uses a MongoDB database for storing the 
multimodal ISOLA data in JSON format. Depending on the source of information, as input we 
receive either images and their metadata (i.e., spatial and temporal information) or text and its 
metadata (i.e., temporal information), and as output we push the data to other ISOLA services. 
Figure 1 provides a general overview of the service, its position with regards to the ISOLA 
architecture, its connection with other services (the relevant tasks are also identified) and the 
flow of data to and from it. 

Thus, the service may receive as input either of the following data: 

 mobile and social data, data from passengers’ moves without using any personal 
information and instead using the userID from social media service (see Figure 1, item 
“1”);  

 detected visual objects (like, skiff) originating from object detection service (see Figure 
1, item “3”); 

 detected abnormal behaviour data (like, fighting) originating from the activity 
recognition service (see Figure 1, item “4”); 

 data from the bottom of the ship and from the bottom of the sea originating from the 
underwater vehicle service (see Figure 1, item “5”); 

 passenger data originating from the face recognition service (see Figure 1, item “2”). 

It should be noted that all the aforementioned input data are accompanied by metadata (e.g., 
datetime, spatial information and produced visual features) according to their type (See Figure 
1, item “6”). 

The original data in case of text along with their original metadata and the produced metadata 
by KR07 are stored in a MongoDB (Figure 1, item “7”), while the original images/ videos are 
stored in a dedicated repository (Figure 1, item “8”). 

After that, the service provides according to the query, which can be either of the 
aforementioned inputs, different results (Figure 1, item “9”). The outcome of the service along 
with the initial information (Figure 1, item “10”) is served to the Ontologies service and decision 
support service. The service is also responsible for inserting and updating the records in 
MongoDB. The data exchanges among the different services are realized through the Kafka’s 
distributed system. 

Regarding social media information the service detects if a specific alert keyword exists in 
social data, and if it exists then it produces an alert and sends it to the Ontologies service and 
decision support service. Specifically, it processes the TwitterID and the TwitterText for finding 
specific keywords from the predefined alert keywords (like, piracy and attack), while personal 
data are not part of the analysis. Finally, the service does not require to store this data for long-
term use. 
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Figure 1. Project architecture based on the Integration Layer and Multimodal Indexing of 
Heterogeneous Data 

This deliverable is structured as follows. Section 2 presents relevant recent works and Section 
Error! Reference source not found. gives details of the proposed multimodal retrieval 
method. The dataset and the experimental results are presented in Section 4 and Section 5, 
respectively. Section Error! Reference source not found. contains the framework of the 
service. The paper concludes with a brief summary in Section 7. 

2 Related work 

Multimodal retrieval is the field of study concerned with searching, browsing and retrieving 
multimedia data available in different contexts like text, image, audio and video from database 
(Xie2020). Due to the massive generation of multimedia data around the world, multimodal 
retrieval attracts interest among researchers from many fields, like image processing, 
multimedia search, and computer vision. The main challenges are: (a) the semantic gap 
between the low-level feature representing and high-level semantics in the images (Figure 2), 
and (b) the curse of dimensionality (Figure 3), since feature descriptors usually have hundreds 
or even thousands of dimensions. Hash-based indexes offer reduced storage, by storing only 
compact binary codes in the index, and constant average response time, thus making them 
ideal for addressing the indexing task within ISOLA. Therefore, this work focuses on hashing 
methods in order to use fast search through hash-indexed data instead of inefficient exhaustive 
search. 
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Figure 2. Semantic Gap 

 

Figure 3. Curse of Dimensionality 

Various hashing methods have been proposed for multimodal retrieval. Hashing approaches 
are categorized into single-view (Cao2018, Chen2020, Lin2014, Lin2018, Zhang2010, 
Zhen2016) and multi-view (Gu2019, Jiang2018, Li2018, Lin2015, Liu2019, Mandal2018, 
Zhou2014, Zhu2013). The former approaches use only one view, while the latter approaches 
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importantly support many views/modalities (text, image, and video). Another categorization is 
based on the nature of the hashing functions used to generate the binary codes. Early 
approaches to hash-based indexing used manually-tuned hashing functions (e.g., Indyk1997), 
but more recent hashing approaches use either unsupervised learning (Zhen2016, Zhou2014, 
Zhu2013) or supervised learning (Cao2018, Chen2020, Gu2019,  Jiang2018, Li2018, Lin2018, 
Lin2015, Liu2019, Mandal2018, Yuan2020) methods to generate the hash function, with the 
latter approach performing better.  

In this section, some representative state-of-the-art unsupervised and supervised methods 
from the literature are selected. Figure 4 illustrates the basic procedure of a supervised and 
an unsupervised method. Specifically, the upper subfigure presents the procedure of learning 
to map annotated/labeled data to clusters and corresponds to supervised learning. In contrast, 
the bottom subfigure includes the procedure of learning the inner relationships of unlabeled 
data and grouping of them in clusters based on their inner structure of data. 

Unsupervised hashing methods usually learn hash functions from data distribution in order to 
preserve the structures of training data. The Linear Cross-Modal Hashing (LCMH, Zhu2013) 
transforms each instance of training set into a k-dimensional approximation point (with k 
clustering) and maps the approximation points into Hamming space with the learnt hash 
functions, to match with the database binary codes. The Latent Semantic Sparse Hashing 
(LSSH, Zhou2014) learns latent semantic features for images and texts, respectively, with 
sparse coding and matrix factorization, and maps them to a joint abstraction space for 
generating unified hash codes. Finally, the SelfTaught Hashing (STH, Zhen2016) finds the 
optimal l-bit binary codes for all documents in the given corpus via unsupervised learning, and 
then trains l classifiers via supervised learning to predict the l-bit code for any query. 

 

Figure 4. Supervised and Unsupervised Learning  

Supervised methods, on the other hand, learn hash functions using supervised information. 
The supervised hashing methods can be splitted into three categories. The Error-free methods 
try to learn hash codes directly, while the transitive methods that uses transfer learning for 
learning compact hash codes, the Quantization methods and the Similarity matrix based 
methods use relaxation mechanism to learn hash codes (Lin2015). In particular, the 
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Quantization category uses quantization to obtain the final results, while the Similarity based 
category uses a matrix representation when learning hash functions. 

There are hashing methods (Error-free methods) that try to direct find the hash codes without 
any relaxation procedure. The Kernel-based discrete latent factor model based cross-modal 
hashing (KDLFH, Jiang2018) is a discrete method which can directly learn the binary hash 
codes without continuous relaxation using a stochastic learning strategy. Furthermore, the 
Deep Priority Hashing (DPH, Cao2018) generates compact and balanced hash codes by jointly 
optimizing priority cross-entropy and quantization loss. Another method is the Rank-embedded 
Hashing (ReHash, Fu2020) that integrates the ranking metric into deep supervised hashing, 
which employs asymmetric supervision of deep learning for optimizing the compact codes 
projection. Moreover, the Matrix Tri-Factorization Hashing Framework (MTHF, Liu2019) aims 
to transfer knowledge from single-modal source domain to cross-modal target domain for 
promoting cross-modal retrieval. Chen, et al. proposed the Pairwise Correlation Discrete 
Hashing (PCDH, Chen2020), which uses the pairwise correlation of deep features and 
semantic information to generate discrete hashing codes. 

There are also supervised methods that use adversarial learning or transfer knowledge. The 
Generalized Semantic Preserving Hashing (GSPH, Mandal2018) learns the optimum hash 
codes for the two modalities simultaneously, and then learns the hash functions to map from 
the features to the hash codes. Furthermore, the Adversary Guided Asymmetric Hashing 
(AGAH, Gu2019) uses adversarial learning guided multi-label attention mechanism to learn 
feature representation and generates binary codes from an asymmetric loss hash network. 
Finally, the Deep Adversarial Discrete Hashing (DADH, Bai2020) uses adversarial training for 
learning features across modalities and ensures the distribution consistency of feature 
representations across modalities. 

Some methods try to solve the hard discrete optimization problem by relaxing the binary 
constraints and quantizing the solution to obtain the final results. Yuan, et al introduced the 
Central Similarity Quantization (CSQ, Yuan2020) that presents a global central similarity and 
encourages the hashing codes of similar images to arrive at the corresponding centers. Label-
Attended Hashing (LAH, Xie2020) combines CNNs and Graph Convolution Network for 
generating image representation and label co-occurrence embeddings separately, adopts 
Multi-modal Factorized Bilinear (MFB) to fuse these vectors and learns the hash function with 
a loss function based on Cauchy distribution. Finally, the Fast Discrete Matrix Factorization 
Hashing (FDMFH, Zhao2021) utilizes matrix factorization to learn a latent semantic space and 
generates codes by rotating quantization and preserving with linear regression the original 
locality structure of training data. Moreover, the Lightweight Augmented Graph Network 
Hashing (LAGNH, Cui2021) extracts the inner structure of the image as the auxiliary semantics 
to enhance the semantic supervision of the unsupervised hash learning process  

Other methods try to construct a simple similarity matrix when learning hash functions or binary 
codes. The Hadamard Codebook based Online Hashing (HCOH, Lin2018) utilizes a Hadamard 
matrix by minimizing the l2 difference between hash-like output and the target hash codes with 
their corresponding labels (i.e., Hadamard loss). It trains the classification loss and Hadamard 
loss simultaneously. The Self-Supervised Adversarial Hashing Network (SSAH, Li2018) 
incorporates a self-supervised semantic network coupled with multi-label information, and 
carries out adversarial learning to maximize the semantic relevance and feature distribution 
consistency between different modalities. . In addition, the Fast cross-modal hashing (FCMH, 
Wang2021) takes both global and local similarities of data through global and local similarity 
embedding and solves the binary optimization problem by a well-designed group updating 
scheme. Finally, the Semantic Preserving Hashing (SePH, Lin2015) generates one unified 
hash code for all observed views of any instance. The Bayesian-Ridge-based Semantic 
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Preserving Hashing (BiasHash, Pegia2022) builds on top of the SePH method by using 
Bayesian regression as the utilized predictive model. The choice of SePH as baseline is based 
on the evaluation of training method is lower compared to other methods. In particular, the 
BiasHash uses the semantic probabilities of training data, approximates them with the learnt 
hash codes and then uses a Bayesian framework to learn these projection functions, motivated 
by the probability distribution that visual features tend to approximate. 

Supervised methods perform better than the unsupervised methods in praxis. Apart from that, 
the supervised method BiasHash isn't greatly affected by the way the dataset is split and it 
outperforms the methods of the same category, as highlighted in the work of (Pegia2022). Only 
two methods were chosen, for comparison with BiasHash, as the most representative from the 
literature, SSAH (Li2018), FCMH (Wang2021) in terms of greater impartiality. 

3 Multimodal Indexing Framework 

3.1 BiasHash method 

The approach that is incorporated in ISOLA is the Bayesian-Ridge-based Semantic Preserving 
Hashing (BiasHash, Pegia2022), which extends the Semantic Preserving Hashing (SePH, 
Lin2015). Figure 5 shows an overview of the SePH and the extensions proposed by the 
supervised hashing BiasHash framework. The light yellow boxes belong only to the BiasHash, 
while the other parts belong to both methods. Given that they are supervised methods, they 
both consist of two phases, the offline and the online phase. The offline phase corresponds to 
the training procedure, while the online phase corresponds to the testing procedure.  
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Figure 5. Proposed framework for BiasHash 

In the offline phase, the affinity matrix is computed by training label vectors (Step1) and the 
semantic probabilities from affinity values (Step 2). Then, these values are projected to the 
learnt Hamming probabilities solving a minimization problem (Step 3). In the sequel, the 
Hamming vectors are stored in a database (Step 4). Then, the visual features are extracted 
from training images, the temporal features from the  timestamps and the spatial features from 
the location (Step 5). Finally, the method learns the respective hash functions for each modality 
(Step 6) from each of the visual, temporal, spatial vectors to Hamming codes using Bayesian 
ridge regression.  

In the online phase, for a given query, the approach extracts the visual feature (Step 7) and 
computes its Hamming code using the learnt hash functions (Step 8). After that, it combines 
the hash codes from different modalities using a fusion function and generates one unified 
hash code (Step 9). Finally it computes the Hamming distances between query and database 
codes in GPU (Step 10), ranks the results and returns the top k most relevant (Step 11).  



 

D5.2: Integration Layer and Multimodal Indexing of Heterogeneous 
Data 

 

 

  Page 19 of 59 

In the sequel, more details on each step from the training phase are provided, starting with the 
notation. 

 𝑂 is the training set of size |𝑂| = 𝑛, with 𝑂𝑖 its 𝑖 -th instance.  

 𝑋, 𝑇, 𝑆 corresponds to the visual, temporal and spatial features, respectively. Each of 
the aforementioned three real arrays has size 𝑛 × 𝑑𝑥𝑛 × 𝑑𝑡, and 𝑛 × 𝑑𝑠, respectively.  

 𝐿 is the binary matrix of size 𝑛 × 𝑙 with 𝑙  the total number of labels, which denotes the 
semantic labels. For each instance 𝑂𝑖, the row 𝑋𝑖,. , 𝑇𝑖,., 𝑆𝑖,.and 𝐿𝑖,. belongs to the visual, 

temporal, spatial and semantic feature vector, respectively.  

 𝐴 is the real matrix of size 𝑛 × 𝑛 that represents the affinity matrix of the training set.  

 𝐻 is a Binary matrix of size 𝑛 × 𝑑𝑐 that denotes the learnt hash codes of the training set 
of code length 𝑑𝑐. Each row of 𝐻 (i.e., 𝐻𝑖,.) corresponds to the projection of each 

semantic instance.  

  𝑢𝑘
𝑋, 𝑢𝑘

𝑇 and 𝑢𝑘
𝑆 correspond to the learnt hash function of 𝑘-th bit, for 1 ≤ 𝑘 ≤ 𝑑𝑐  of visual, 

temporal and spatial modality, respectively.  

 𝑢𝐹 denotes the unified hash code, after the fusion of all available modalities. 

 ℎ(. , . ) is the Hamming distance between two hash codes of respective unified codes.  

 𝑐𝑋, 𝑐𝑇 and 𝑐𝑆  denote the hash codes of respective visual (X), temporal (T) and spatial 

(S) features, respectively and with 𝑐𝑘
𝑋, 𝑐𝑘

𝑇 and 𝑐𝑘
𝑆 the 𝑘-th bit of hash code𝑐𝑥, 𝑐𝑡 and 𝑐𝑠 

of visual (𝑥), temporal (𝑡) and spatial (𝑠) feature, respectively, and for 1 ≤ 𝑘 ≤ 𝑑𝑐. 

The proposed method is built on SePH, thus the description of the SePH method is given 
initially and then the differences are outlined. Specifically, the SePH first computes the affinity 
matrix 𝐴 using the cosine similarity of corresponding vectors: 

𝛢 =  
< 𝐿𝑖,. , 𝐿𝑗,. >

‖𝐿𝑖,.‖‖𝐿𝑗,.‖
 

(1) 

Then the probabilities are computed as follows: 

𝑝𝑖,𝑗 =  
𝐴𝑖,𝑗

∑ ∑ 𝐴𝑖,𝑗
𝑛
𝑗=1,𝑗 ≠ 𝑖

𝑛
𝑖=1

 

(2) 

in semantic space 𝑃.  The probabilities 𝑞𝑖,𝑗 of instances in Hamming space 𝑄 can be computed 

easily using the theorem that a Student t-distribution with one degree of freedom is utilised for 
transforming each pairwise Hamming distance into a probability. The theorem belongs to the 
work of van der Maaten and Hinton (Maaten2008) and the probabilities are: 

𝑞𝑖,𝑗 =  
(1 + ℎ(𝐻𝑖,., 𝐻𝑗,.))

−1

∑ ∑ (1 + ℎ(𝐻𝑘,., 𝐻𝑚,.))
−1𝑛

𝑚=1,𝑚 ≠ 𝑘
𝑛
𝑘=1

 

(3) 
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The differences between 𝑄 and 𝑃 can be measured using the Kullback-Leibler divergence. 
Therefore, the optimal hash code matrix 𝐻 of training set can be computed by minimizing it. 
Nevertheless, this minimisation problem belongs to the integer programming problems, which 
are NP-hard (Papadimitriou1981) and difficult to solve accurately. Therefore, the binary matrix 

𝐻 is relaxed to the real valued matrix 𝐻̂ in Equation (4): 

Ψ = min
𝐻̂∈ℝ𝑛×𝑑𝑐

∑ ∑ 𝑝𝑖,𝑗 𝑙𝑜𝑔
𝑝𝑖,𝑗

𝑞𝑖,𝑗
+  

𝛼

𝐶
 ‖|𝐻̂ − 𝐼|‖

2

2
𝑛

𝑗=1,𝑗 ≠𝑖

𝑛

𝑖=1

 

(4) 

Ψ is the minimization problem, 𝐼 ∈ {1}𝑛×𝑑𝑐, 𝛼 = 10−6 is a model parameter for weighting 
quantisation loss, 𝐶 = 𝑛 × 𝑑𝑐  is a normalisation factor for tuning the parameter 𝛼 for affecting 
less by the hash code length and the training size and  

𝑞𝑖,𝑗 =  
(1 + ‖𝐻̂𝑖,. −  𝐻̂𝑗,.‖2

2
)

−1

∑ ∑ (1 +  ‖𝐻̂𝑘,. − 𝐻̂𝑚,.‖2

2
)

−1
𝑛
𝑚=1,𝑚 ≠𝑘

𝑛
𝑘=1

 

(5) 

After that, the stochastic gradient descent (Ruder2017) is used for solving the unconstrained, 

non-convex optimisation problem (Equation (4)) and finding a locally optimal 𝐻̂. Then, the 
Hamming space matrix is computed: 

𝐻 = 𝑠𝑖𝑔𝑛(𝐻̂) 

Then the kernel logistic regression is used for learning the hash function for visual modality, 
which projects the visual features to derived hash codes 𝐻. With learnt hash functions for 

indexing process, the hash codes of any unseen instance 𝑧𝑢 can be predicted. 

During the online phase, and for each query the method computes its Hamming distance from 
each item in the retrieval set, sorts the retrieval set in ascending order based on this value and 
then chooses the top k items from the ordered set. 

In particular, the k-th bit of the predictive visual hash code 𝑐𝑋 can be measured using kernel 
logistic regression 

𝑐𝑘
𝑋 = 𝑠𝑖𝑔𝑛((𝜙(𝑋𝑖,.))Φ̂𝑡)𝑢(𝑘) 

(6) 

for 1 ≤ 𝑘 ≤ 𝑑𝑐 and 𝑢(𝑘) ∈  ℝ𝑑𝑥. Φ is the kernel feature matrix and 𝜙(𝑋𝑖,.) is the transformation 

of visual feature 𝑋𝑖,., in the Reproducing Kernel Hilbert Space (RKHS). 

It should be noted that SePH uses Hamming distance to perform retrieval for query hash code 
𝐻𝑞 from the retrieval hash codes: 

ℎ(𝐻𝑞 , 𝐻𝑖) =  𝑏𝑖𝑡_𝑐𝑜𝑢𝑛𝑡(𝐻𝑞 ⊗ 𝐻𝑖) 

(7) 
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where the symbol ⊗ denotes the XOR operation between the bits of 𝐻_𝑞 and 𝐻𝑖, and 𝑏𝑖𝑡_𝑐𝑜𝑢𝑛𝑡 
sums the number of 1’s in the binary result. Next, it ranks all the instances of the retrieval set 
based on their Hamming distances in an ascending order and chooses the top ones. 

Similar with SePH, BiasHash computes the affinity matrix, and the semantic space matrix, as 
descripted above. However, BiasHash differs in the following points:  

First, BiasHash uses a Bayesian Ridge Regression (Tipping2001) as predictive model for 
learning hash functions. Bayesian Ridge Regression is a linear model that uses probability 
distribution rather than point estimation of linear regression. The linear regression minimises 
loss, while the Bayesian version maximises the posterior probability by fitting a probabilistic 
model. This will give the model more flexibility on the way of splitting to training and testing set. 
Specifically, the linear model: 

𝐻.,𝑘 = 𝑍 𝑢𝑍
𝑘 + 𝜖  

𝜖 ∼ 𝑁(𝑂𝑛, 𝜎2𝐼𝑛) 

𝐻.,𝑘 ∈ {0, 1}𝑛 

(8) 

where 𝐻.,𝑘 is the k-th column of learnt hash codes 𝐻 and Z are the features for any modality 

(like, visual, temporal and spatial). It can be formulated as 𝐻.,𝑘 ∼ 𝑁(𝑍𝑢𝑍
𝑘 , 𝜎2𝐼𝑛).  

Second, BiasHash computes the posterior mean for each modality 𝑍 using the iterative method 
of Tipping based on parameters updates used by MacKay (Tipping2001, Pedregosa2011) and 

set it to 𝑢𝑍
𝑘. After that it computes the hash codes for visual (𝑐𝑋), temporal (𝑐𝑇) and spatial (𝑐𝑆) 

modality. Similar to SePH each bit 𝑘 = 1, … , 𝑑𝑐 of each hash code is computed by 

𝑐𝑘
𝑍 = 𝑠𝑖𝑔𝑛(𝑍𝑖 , 𝑢𝑍

(𝑘)
) 

(9) 

Third, it fuses the hash codes using the fusion method: 

𝑐𝐹 = (𝑐𝑋 ⊗ 𝑐𝑇) ⊕ (𝑐𝑋 ⊗ 𝑐𝑆) ⊕ (𝑐𝑇 ⊗ 𝑐𝑆) 

(10) 

with ⊕ be the AND bitwise operator and ⊗ be the bitwise XOR operator. 

In the testing phase the BiasHash extracts the visual, temporal and spatial feature for a given 
query. After that it uses the pretrained modality-specific hash functions to compute the 
corresponding hash code (Equation (9)). Next, it fuses the hash codes into one unified hash 
code (Equation (10)). Finally it computes the similarity scores with the indexed elements in the 
database. 

3.2 Methodology and ISOLA data 

In this section, we focus on the application of BiasHash within the context of ISOLA and the 
different available modalities 



 

D5.2: Integration Layer and Multimodal Indexing of Heterogeneous 
Data 

 

 

  Page 22 of 59 

Thus, as far as the visual representation of images is concerned, we produce the visual 
features of images using a pretrained VGG-16 with 𝑑𝑥 = 4096 for data from object detection 
service, activity recognition service and underwater vehicle service.  

Regarding the spatial feature of a location = (longitude, latitude, altitude), this is computed as 
a 3D vector (𝑑𝑠 = 3). 

Finally, as far as the temporal feature is concerned, the timestamp, which is captured in UTC 
(like, YYYY-MM-ddTHH: mm:ss.fffZ) is represented as a 203-D vector (𝑑𝑡 = 203). Specifically 
the first four coordinates of the temporal feature belongs to the 4 digits of the year, the next 12 
digits to the one-hot-encoding for month, the next 31 digits to the one-hot encoding for day, 
the next 24 to the one-hot-encoding for hours, the next 60 to the one-hot encoding for minutes, 
the next 60 to the one-hot-encoding for seconds and the last 12 digits to microseconds. Error! 
Reference source not found. presents an example of the extraction of the temporal feature 
from a datetime.  

 

Figure 6. Example for construction of a temporal feature from a datetime. 

4 Dataset 

In this section, we present several datasets on which the BiasHash and other state-of-the-art 
methods are being evaluated in the context of ISOLA. Specifically, the methods are evaluated 
against the ISOLA dataset (i.e., data retrieved from other services), and several other datasets 
(i.e., MarDCT, SeaDronesSee, SeaShips). 

4.1 ISOLA Dataset 

The ISOLA dataset contains a plethora of different types of heterogeneous data. Specifically, 
there are eight collections, which are stored in the MongoDB database. The collections are 
ACCELI_MISSION, CERTH_ACT, CERTH_OBJ, CERTH_OBJ_QUERIES, IDMG_FACE,  

OMST_UUV, OMST_UUV_QUERIES and SIMAVI_MOBILE. Some information concerning 
the data come from the messages of other partners through Kafka and others are produced 
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from this service. The choice of these collections came from the data model with the 
collaboration of all partners. Apart from that the datetime and location fields help the service 
to perform faster queries in MongoDB. In addition ObjectId is a unique ID for each MongoDB 
document and is given by an insertion of a document to the MongoDB. 

 The collection ACCELI_MISSION contains spatial and temporal information, when an 
object is detected by the tethered UAV drone. Figure 7 has an example of a document 
from this collection. It shows each field with its correspondent type of value. Apart from 
that an example of a document exists in Figure 8. 

 

Figure 7. Fields and values of the ACCELI_MISSION collection 

 

 

Figure 8. An example of a document from the ACCELI_MISSION collection 

  



 

D5.2: Integration Layer and Multimodal Indexing of Heterogeneous 
Data 

 

 

  Page 24 of 59 

 The collection CERTH_ACT contains the detected abnormal behaviours of passengers 
(like, running) on the ship with spatial and temporal information. Figure 9 and Figure 
10 contains the fields with the type of values and an example of a document of this 
collection. 

 

Figure 9. Fields and values of the CERTH_ACT collection 
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Figure 10. An example of a document from the CERTH_ACT collection  

 The collection CERTH_OBJ includes images with spatial and temporal information, 
when an object is detected in videos from a UAV. The source field may be ACCELI or 
IBM_DRONES and this field is provided by the CERTH_OBJ. An example of a 
document and its value exists in Figure 11 and in Figure 12. The service computes the 
metadata based on the inputs of CERTH_OBJ and inserts the document to the 
MongoDB. It contains six arrays. Specifically the first three corresponds to the visual, 
temporal and spatial feature of each image, while the later three to the hash codes of 
each of the aforementioned modalities (image, time, location). The visual, temporal and 
spatial feature arrays have length 4096, 203, 3 elements, respectively. The binary 
arrays have the same size and particularly each consists of 16 bits. 



 

D5.2: Integration Layer and Multimodal Indexing of Heterogeneous 
Data 

 

 

  Page 26 of 59 

 

Figure 11. . Fields and values of the CERTH_OBJ collection 
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Figure 12. An example of a document from the CERTH_OBJ collection 

 The collection CERTH_OBJ_QUERIES contains the queries from Decision Support for 
the data of CERTH_OBJ for piracy incident scenario. The service performs queries that 
combine visual and spatial information and return the most similar images. Figure 13 
and Figure 14 contain the fields and the value’s types as well as an example of this 
collection.  
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Figure 13. Fields and values of the CERTH_OBJ_QUERIES collection 

 

Figure 14. An example of a document from CERTH_OBJ_QUERIES collection 

 The collection IDMG_FACE includes the information of each passenger of the ship and 
is provided by the face detection service. Figure 15 presents the fields and the value 
of each field for this collection. An example of a document exists in Figure 16. 
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Figure 15. Fields and values of the IDMG_FACE collection  

 

Figure 16. An example of a document from the IDMG_FACE collection 

 The collection OMST_UUV includes the data from UUV service. Figure 17 presents the 
fields and the value of each field for this collection. An example of a document exists 
in Figure 18. 
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Figure 17. Fields and values of the OMST_UUV collection 

 

Figure 18. An example of a document from the OMST_UUV collection  

 The collection OMST_UUV_QUERIES contains the queries made by the Decision 
Support service to CERTH_MULTI requesting data from the UUV service. It has the 
URL of an image from the bottom of the vessel and the service finds and returns the 
most visual similar to the query images. Figure 19 presents the fields and values of a 
document of this collection, while Figure 20 has an example of a document. 
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Figure 19. Fields and values of the OMST_UUV_QUERIES collection  

 

Figure 20. An example of a document from the OMST_UUV_QUERIES collection  

 The collection SIMAVI_MOBILE contains the social data of each passenger’s mobile 
and the data is provided by the mobile and social media service. CERTH_MULTI and 
SIMAVI decide specific predefined keywords that correspond to alerts (Figure 21). If 
any of this alert keywords occur in a Twitter message, then the CERTH_MULTI adds a 
new field to the document alert with value True. This field emphasises that something 
suspicious exists in social data and the intelligent reporting should inform about it.  The 
fields and the value of each field for this collection are given in Figure 22. Figure 23 
presents an example of a document. 

 

Figure 21. An example of a document from the SIMAVI_MOBILE collection 
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Figure 22. Fields and values of the SIMAVI_MOBILE collection 

 

Figure 23. An example of a document from the SIMAVI_MOBILE collection 

4.2 Publicly available datasets 

Given that ISOLA focuses on identifying threats or abnormal activities related to vessels that 
may be detected by UAVs or UUVs or social media, the experiments were focused on vessel 
related datasets. Thus, the following three publicly available vessel datasets are used in the 
experiments, MarDCT (Bloisi2015), SeaDronesSee (Varga2022) and SeaShips (Shao2018). 
More information for each dataset can be found in Section 4.2.1, Section 4.2.2 and Section 
4.2.3, respectively. Similar to the ISOLA datasets, these collections are also stored in the 
MongoDB and examples of document for each collection are explained in the following 
subsections. 

4.2.1 MarDCT dataset 

MarDCT is a vessel dataset, which consists of 6743 annotated data with temporal available 
information. Some images from MarDCT dataset exist in Figure 24. There is a proposed way 
for splitting the dataset according to (Bloisi2015). Specifically, query/training/validation set 
correspond to the values 1969/1064/4774. Figure 25 presents the data for each class and 
Figure 26 the data of each class for query and train set. 
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Figure 24. Some images from MarDCT dataset  

 

Figure 25. Histogram of classes for MarDCT dataset 

 

Figure 26. Histogram of classes for query (left) and train (right) set for MarDCT dataset 

The collection MarDCT corresponds to the dataset MarDCT with associated metadata. Figure 
27 presents the fields and values of a document, while Figure 28 presents an example of a 
document from this collection. The metadata field consists of the computed features from the 
service. 
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Figure 27. Fields and values of the MarDCT collection 

 

Figure 28. . An example of a document from the MarDCT collection 

4.2.2 SeaDronesSee dataset 

SeaDronesSee dataset consists of 5630 vessel annotated images with available temporal and 
spatial information. Images from SeaDronesSee dataset are presented in Figure 29. The 
dataset is proposed to be split into 1796 query, 2975 training and 859 validation data by the 
documentation (Varga2022). Figure 30 contains the data for each class and Figure 31 the data 
of each class for query and train set. 
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Figure 29. Some images from SeaDronesSee dataset 

 

Figure 30. Histogram of classes for SeaDronesSee dataset 

 

Figure 31. Histogram of classes for query (left) and train (right) set for SeaDronesSee dataset 

The collection SeaDronesSee is related to the dataset SeaDronesSee with additionally 
metadata. Figure 32 includes the fields and values of a document, while Figure 33 illustrates 
an example of a document from this collection.  
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Figure 32. Fields and values of the SeaDronesSee collection 
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Figure 33. An example of a document from the SeaDronesSee collection 

4.2.3 SeaShips dataset 

The dataset SeaShips includes 7000 annotated images. Specifically it contains five classes 
(like, cargo ship and passenger ship), each corresponding to a different vessel type. Figure 34 
presents some images from the dataset. Figure 35 contains the data for each class and Figure 
36 the data of each class for the query and train sets respectively. 

 

Figure 34. Some images from SeaShips dataset 
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Figure 35. Histogram of classes for SeaShips dataset 

 

Figure 36. Histogram of classes for query (left) and train (right) set for SeaShips dataset 

The collection SeaShips corresponds to the dataset SeaShips with associated metadata. 
Figure 37 presents the fields and values of a document and Figure 38 contains an example of 
a document from this collection.  

 

Figure 37. Fields and values of the SeaShips collection 
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Figure 38. An example of a document from the SeaShips collection. 

5 Experiments 

This section contains the performance measures, the parameters’ values and the experimental 
results that involves the comparison of the BiasHash approach against other methods and 
against several datasets. From the literature only two methods were chosen. Specifically, the 
methods against which the BiasHash is validated is SSAH (Li2018), FCMH (Wang2021). 
Furthermore the other methods of the same category perform worst as highlighted in the work 
of Pegia2022. BiasHash belongs to the same supervised hashing category as the other two 
methods and therefore the comparison was made in the same category for greater impartiality.  

5.1 Evaluation Metrics 

The Precision (prec) is the fraction of the relevant results in the total number of results. 

 

𝑝𝑟𝑒𝑐 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
 

(11) 

The Precision at k (prec@k) is the fraction of relevant items in the top k recommended results. 

𝑝𝑟𝑒𝑐@𝑘 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑡𝑜𝑝𝑘 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

𝑘
 

(12) 

The average precision at k (AP@k) is the sum of precision at k for different values of k divided 
by the total number of relevant items in the top k results. 

𝐴𝑃@𝑘 =  ∑
1

𝑟𝑖

𝑘

𝑖=1

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑖 𝑟𝑒𝑠𝑢𝑙𝑡𝑠) × 𝑟𝑒𝑙(𝑖)

𝑖
 

𝑟𝑒𝑙(𝑖) = {
1,   𝑖𝑓 𝑖 − 𝑡ℎ 𝑖𝑡𝑒𝑚 𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

 

(13) 
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5.2 Parameters 

BiasHash trained VGG-16 to the three public vessel dataset (MarDCT, SeaDronesSee and 
SeaShips) and used the best model for visual feature extraction and learnt visual hash 
functions. Different training sizes are used for each vessel dataset. More information can be 
found in Section 5.4, Section 5.5 and Section 5.6. Similarly, the hash function for temporal and 
spatial modality are used from the training set of the public vessel dataset. 

5.3 ISOLA Dataset 

This section includes some experiments of the service of the ISOLA dataset. We give 
examples from the decision support service, the object detection service and the UUV service. 
In particular, the queries of decision support service about UUV and UAV are presented in 
Section 5.3.1. In the case of UAV, the method uses the pretrained VGG-16 for visual feature 
extraction and hash code computation, because the model is trained to vessel dataset. 
However, in the case of UUV, there is not an available public dataset about vessels. Therefore, 
the service computes only the differences in feature level between images and ranks them in 
ascending order without using the BiasHash method. 

5.3.1 Experiments 

An example from CERTH_OBJ collection is depicted in Figure 39. 

 

Figure 39. Image example from CERTH_OBJ collection 

An example of decision support query for visual similarities related to the object detection 
service data is presented in Figure 40 along with its retrieved results. 
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Figure 40. Example of visual similarities for a given query from decision support service 

The OMST_UUV dataset contains the UUV from UUV service. An example of an image from 
UUV and an example of a query from Decision Support for finding visual similarities is shown 
in Figure 41 and Figure 42. Figure 43 presents a scenario of finding the most dissimilar images 
for a given query. 

 

Figure 41. An image from OMST_UUV collection 

 

Figure 42. An example of visual similarities of a query from decision support service for OMST_UUV 
data 
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Figure 43. An example of visual dissimilarities of a query from decision support service for 
OMST_UUV data 

5.3.2 Conclusions 

From the experiments in the previous subsection (Section 5.3.1), the service can detect 
similarities for UAV and UUV data. The scenario of finding the most dissimilar image from a 
mission of UUV service could be helpful to limit the number of queries to the service. Apart 
from that, from these first experiments the BiasHash can perform quite well uni-modal (visual) 
and multimodal (more than one modalities, like visual and spatial) queries in contrast to the 
SSAH (Li2018), FCMH (Wang2021) methods. 

5.4 MarDCT dataset 

This section contains some quality and visual results for the MarDCT dataset. In particular, 
Figure 44 illustrates some visual results of the retrieved results of BiasHash for different code 
lengths and modalities. Furthermore experiments comparing the state-of-the-art methods in 
MarDCT is depicted in Figure 45. Finally, Table 2 and Table 3 present some quality results in 
terms of AP@k, k = 20, 50, 100, 200, 300 using Equation (13), for BiasHash and for SSAH 
(Li2018), FCMH (Wang2021) methods. 

5.4.1 Experiments 

Figure 44 illustrates the first ten results of BiasHash for any combination of visual and temporal 
modality and for hash code lengths 16, 32, 64, 128 bit in MarDCT. BiasHash performs better 
in visual modality and in the combination of two modalities. Table 2 presents the performance 
of BiasHash in terms of AP@k for different code lengths and for k = 30, 50, 100, 200, 300. The 
performance of BiasHash increases as the code lengths increases. 
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Figure 44. The first 10 results from BiasHash method for code lengths 16, 32, 64, 128 bits and for any 
combination of visual and temporal information on MarDCT dataset 

Modality/k 30 50 100 200 300 

16bit 

Visual 0.68471 0.68060 0.68202 0.67634 0.67325 

Temporal 0.26297 0.24609 0.23063 0.21987 0.21741 

Visual+Temporal 0.67939 0.66869 0.64720 0.62141 0.60141 

32bit 

Visual 0.71850 0.71477 0.70297 0.69346 0.68530 

Temporal 0.22164 0.21367 0.20183 0.19014 0.18485 

Visual+Temporal 0.67939 0.66869 0.64720 0.62053 0.60141 

64bit 

Modality/k 30 50 100 200 300 
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Modality/k 30 50 100 200 300 

Visual 0.76496 0.76296 0.75517 0.75517 0.75097 

Temporal 0.23998 0.22592 0.20717 0.19217 0.18774 

Visual+Temporal 0.77298 0.76243 0.74044 0.71485 0.69572 

128bit 

Visual 0.72811 0.72372 0.71664 0.70857 0.70373 

Temporal 0.24670 0.22626 0.20237 0.18613 0.18025 

Visual+Temporal 0.68879 0.66979 0.63981 0.60418 0.58080 

Table 2. The AP@k of BiasHash method for code lengths 16, 32, 64, 128 bit and for any combination 
of visual and temporal modality on MarDCT dataset 

Figure 45 presents the top 10 results of each method for different modalities. BiasHash returns 
the most relevant and better quality results compared to the two state-of-the-art methods. In 
addition, Table 3 contains the performance of each method in terms of AP@k, for k = 30, 50, 
100, 200 and 300. 

 

Figure 45. The first 10 results from BiasHash, SSAH and FCMH methods for any combination of 
visual and temporal information on MarDCT dataset for 64 bit 

Method/k 30 50 100 200 300 

VISUAL 
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Method/k 30 50 100 200 300 

SSAH  0.44771 0.44249 0.43509 0.48787 0.41545 

FCMH 0.71700 0.70231 0.68123 0.67001 0.66321 

BiasHash 0.76497 0.76296 0.75517 0.75517 0.75097 

TEMPORAL 

SSAH - - - - - 

FCMH - - - - - 

BiasHash 0.23998 0.22592 0.20717 0.19217 0.18774 

VISUAL+TEMPORAL 

SSAH 0.22314 0.23331 0.22940 0.21694 0.21514 

FCMH 0.71180 0.70731 0.69344 0.68012 0.67722 

BiasHash 0.77298 0.76243 0.74044 0.71485 0.69572 

Table 3. The AP@k of BiasHash method for code lengths 16, 32, 64, 128 bit and for any combination 
of visual and temporal modality on MarDCT dataset 

5.4.2 Conclusions 

The performance of BiasHash mainly increases as the hash code length increases, reflecting 
its capability of utilizing longer hash codes to better preserve information. It should be noted 
that the results for temporal modality are the lowest, because the datetimes of the dataset have 
a wide range. However, the BiasHash performs better in multimodal queries, which is 
expected, because if a method uses more information, has a more compact understanding of 
the input data. Furthermore, BiasHash outperforms the two state-of-the-art methods, namely 
SSAH and FCMH, and it can also perform multimodal queries in contrast to the other two 
methods.  

5.5 SeaDronesSee dataset 

This section includes some quality and visual results of the SeaDronesSee dataset. 
Specifically, Figure 46, Figure 47, Figure 48, Figure 49 contain some visual results of the 
retrieved results of BiasHash for different code lengths and modalities. Moreover, experiments 
with comparison with two state-of-the-art methods, SSAH (Li2018), FCMH (Wang2021), in 
SeaDronesSee are shown in Figure 50. Finally, Table 4 and Table 5 provide some quality 
results in terms of AP@k, k = 20, 50, 100, 200, 300, using Equation (13), for BiasHash and for 
all compared methods. 
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5.5.1 Experiments 

Figure 46, Figure 47, Figure 48 and Figure 49 presents the top 10 results of BiasHash in 
SeaDronesSee for different modalities and for code lengths 16, 32, 64 and 128bit, respectively. 
Figure 50 contains the visual results of BiasHash and the other two compared methods. 

 

Figure 46. The first 10 results from BiasHash method for 16bits and for any combination of visual, 
temporal and spatial information in SeaDronesSee dataset for 128bit 

 

Figure 47. The first 10 results from BiasHash method for 32bits and for any combination of visual, 
temporal and spatial information in SeaDronesSee dataset for 128bit 
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Figure 48. The first 10 results from BiasHash method for 64bits and for any combination of visual, 
temporal and spatial information in SeaDronesSee dataset for 128bit 

 

Figure 49. The first 10 results from BiasHash method for 128bits and for any combination of visual, 
temporal and spatial information in SeaDronesSee dataset for 128bit 
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Figure 50. The first 10 results from BiasHash, SSAH and FCMH methods for any combination of 
visual and temporal information on SeaDronesSee dataset for 128bit 

Table 4 includes the AP@k of BiasHash for any combination of one or more modalities, for k 
= 30, 50, 100, 200, 300. Also, Table 5 records the performance of BiasHash and the other two 
state-of-the-art methods. 

Modality/k 30 50 100 200 300 

16bit 

Visual 0.642-1 0.61295 0.55992 0.58315 0.57216 

Temporal 0.65935 0.65729 0.65904 0.66198 0.66082 

Spatial 0.77038 0.65572 0.62976 0.61657 0.61209 

Visual+Temporal 0.67849 0.66679 0.64113 0.62882 0.62151 

Visual+Spatial 0.64049 0.62127 0.69255 0.68269 0.68294 

Temporal+Spatial 0.61908 0.62163 0.62129 0.61837 0.61837 

All modalities 0.61020 0.69695 0.69075 0.68753 0.68216 

32bit 

Modality/k 30 50 100 200 300 

Visual 0.63139 0.60922 0.68982 0.68207 0.57739 
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Modality/k 30 50 100 200 300 

Temporal 0.81372 0.80309 0.86986 0.83075 0.70001 

Spatial 0.67038 0.65572 0.62976 0.61657 0.61209 

Visual+Temporal 0.64351 0.62757 0.61631 0.61657 0.61209 

Visual+Spatial 0.64024 0.63654 0.61863 0.60199 0.59869 

Temporal+Spatial 0.57993 0.57961 0.56072 0.57256 0.57623 

All modalities 0.73017 0.70553 0.78863 0.77746 0.77041 

64bit 

Visual 0.69373 0.66930 0.64425 0.62312 0.61322 

Temporal 0.78130 0.74111 0.71239 0.69649 0.68897 

Spatial 0.67038 0.65572 0.62976 0.61657 0.51209 

Visual+Temporal 0.68881 0.66834 0.64753 0.62158 0.61108 

Visual+Spatial 0.62182 0.60906 0.59324 0.57812 0.56439 

Temporal+Spatial 0.63968 0.64063 0.61905 0.61905 0.61999 

All modalities 0.71639 0.79649 0.77192 0.75767 0.75157 

      

Modality/k 30 50 100 200 300 

128bit 

Visual 0.88117 0.83167 0.77889 0.73642 0.71339 

Temporal 0.85718 0.85494 0.83462 0.78276 0.75135 

Spatial 0.67038 0.65572 0.62976 0.61657 0.61209 

Visual+Temporal 0.83616 0.88854 0.82684 0.86351 0.82581 

Visual+Spatial 0.85842 0.82639 0.77752 0.73691 0.71219 

Temporal+Spatial 084546 0.83930 0.79000 0.72869 0.69195 

All modalities 0.89847 0.84899 0.89574 0.84555 0.80934 

Table 4. The AP@k of BiasHash method for code lengths 16, 32, 64, 128 bit and for any combination 
of visual, temporal and spatial modality on SeaDronseSee dataset 
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Method/k 30 50 100 200 300 

VISUAL 

SSAH  0.64879 0.60450 0.60467 0.63433 0.58913 

FCMH 0.79231 0.80302 0.74111 0.72001 0.69122 

BiasHash 0.88117 0.83167 0.77889 0.73642 0.71339 

TEMPORAL 

SSAH - - - - - 

FCMH - - - - - 

BiasHash 0.85718 0.85494 0.83462 0.78276 0.75135 

SPATIAL 

SSAH - - - - - 

FCMH - - - - - 

BiasHash 0.67038 0.65572 0.62976 0.61657 0.61209 

      

Method/k 30 50 100 200 300 

VISUAL+TEMPORAL 

SSAH 0.65786 0.60991 0.60798 0.61419 0.55816 

FCMH 0.78261 0.77231 0.77001 0.76121 0.74001 

BiasHash 0.83616 0.88854 0.82684 0.86351 0.82581 

VISUAL+SPATIAL 

SSAH 0.73900 0.68432 0.65019 0.64195 0.60607 

FCMH 0.78261 0.77231 0.77001 0.76121 0.74001 

BiasHash 0.85842 0.82639 0.77752 0.73691 0.71219 

Method/k 30 50 100 200 300 

TEMPORAL+SPATIAL 
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Method/k 30 50 100 200 300 

SSAH - - - - - 

FCMH - - - - - 

BiasHash 0.84546 0.83930 0.79000 0.72869 0.69195 

VISUAL+TEMPORAL+SPATIAL 

SSAH - - - - - 

FCMH - - - - - 

BiasHash 0.89847 0.84899 0.89547 0.84555 0.80934 

Table 5. The AP@k of BiasHash method for code lengths 16, 32, 64, 128 bit and for any combination 
of visual, temporal and spatial modality on SeaDronseSee dataset.  

5.5.2 Conclusions 

Similar to the results of previous dataset, the performance of BiasHash increases as the hash 
code length increases. The results of BiasHash for the temporal modality are better in 
comparison with the MarDCT dataset, because the datetimes are closer. Moreover, BiasHash 
outperforms almost in all cases the two state-of-the-art methods, SSAH and FCMH and can 
perform multimodal queries. Only for the combination of visual-spatial queries FCMH has 
better results for some topk results. 

5.6 SeaShips dataset 

This section provides some quality and visual results of the SeaDronesSee dataset. In more 
details, it includes some visual results of the retrieved results of BiasHash for different code 
lengths and modalities in Figure 51Figure 51. In addition, experiments with comparison with 
SSAH (Li2018), FCMH (Wang2021) methods on SeaDronesSee exist in Figure 52. Finally, 
Table 6 and Table 7 contain some quality results in terms of AP@k, k = 20, 50, 100, 200, 300, 
using Equation (13), for BiasHash and for all compared methods. 

5.6.1 Experiments 

Figure 51 illustrates the top 10 results for visual modality and for code lengths 16, 32, 64 and 
128 bit on SeaShips dataset. Table 6 presents the AP@k of BiasHash, SSAH and FCMH, for 
k = 30, 50, 100, 200 and 300. 
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Figure 51. The first 10 results from BiasHash method for code lengths 16, 32, 64, 128 bits and for 
visual information on SeaShips dataset 

Modality/k 30 50 100 200 300 

16bit 

Visual 0.54552 0.54825 0.51966 0.52038 0.52411 

32bit 

Visual 0.59675 0.58577 0.56744 0.55321 0.54472 

64bit 

Visual 0.64929 0.63956 0.62851 0.61626 0.61036 

128bit 

Visual 0.61644 0.59437 0.55881 0.53092 0.51642 

Table 6. The AP@k of BiasHash method for code lengths 16, 32, 64, 128 bit and for visual modality 
on SeaShips dataset 

Figure 52 contains the top 10 images for each method on SeaShips dataset for a given query. 
Also, Table 7 has the AP@k of BiasHash, FCMH and SSAH, for k = 30, 50, 100, 200 and 300. 
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Figure 52. The first 10 results from BiasHash, SSAH and FCMH methods for any combination of 
visual and temporal information on SeaDronesSee dataset for 64bit 

Method/k 30 50 100 200 300 

VISUAL 

SSAH  0.44855 0.44775 0.41889 0.38972 0.38109 

FCMH 0.60230 0.59001 0.58822 0.58322 0.56001 

BiasHash 0.64929 0.63956 0.62851 0.61626 0.61036 

Table 7. The AP@k of BiasHash method for code lengths 16, 32, 64, 128 bit and for any combination 
of visual and temporal modality on SeaShips dataset 

5.6.2 Conclusions 

BiasHash has better performance as the hash code length increases. Furthermore, BiasHash 
outperforms the two state-of-the-art methods when applied on the SeaShips dataset. 

After carefully observing the results of the experiments realized in the available datasets and 
the comparison with existing methods, we can conclude that in general BiasHash gives the 
better results and can handle multimodal queries. 

 

6 Integration of the Multimodal Indexing service to ISOLA 

This section discusses the integration of the Integration Layer and Multimodal Indexing service 
into the ISOLA system. In general, the system of ISOLA is set in the open source, distributed 
messaging system Apache Kafka architecture. More specifically, the Event-Driven Architecture 
is used. The Message Bus application of Kafka provides the communication with events 
between services without any directly contacting of one service to another. Each part works 
asynchronously, without being linked to each other. In Kafka messages are sent to and read 
from places called topics. Each Topic has a name.  

Kafka architecture has four actors: Broker, Zookeeper, Producer and Consumer.  

 Kafka contains one or more Brokers, which work interdependently. Messages sent to 
Kafka in brokers are stored on the hard drive and processed.  

 Zookeeper is an open-source software that helps Kafka to manage all Brokers. 



 

D5.2: Integration Layer and Multimodal Indexing of Heterogeneous 
Data 

 

 

  Page 54 of 59 

 Producer writes data to Kafka by sending record in JSON format via it. 

 Consumer reads data from Kafka by receiving record in JSON format via it. 

The Integration Layer and Multimodal Indexing service has one consumer that hears to 
TOPIC1, TOPIC10 and TOPIC15 and one producer that hears to TOPIC2. Figure 53Error! 
Reference source not found. illustrates the topics from Kafka the service reads and sends. 
In particular, the consumer listens to messages from mission drones service, object detection 
service abnormal behavior service, face detection service, and underwater vehicle service in 
TOPIC1, from mobile and social media service in TOPIC10 and from decision support service 
in TOPIC15, while produces messages to ontologies service and decision support in TOPIC2.  

 

Figure 53. Kafka architecture for Integration Layer and Multimodal Indexing service 

 

Figure 54Error! Reference source not found. presents an example of a message that the 
consumer of the service can read. The available TOPIC_NAME values are TOPIC_01, 
TOPIC_10 and TOPIC_15. The field sender can take the values “ACCELI_MISSION”, 
“CENTRIC_DECISION”, “CERTH_ACT”, “CERTH_OBJ”, “IDMG_FACE”, “OMST_UUV” and 
“SIMAVI_MOBILE”. Finally, the SOURCE_NAME can take the values “”ACCELI_MISSION”, 
“IBM_DRONES”, “IDMG_FACE”, “OMST_UUV” and “SIMAVI_MOBILE” and corresponds to 
the source from which the information begin in a Kafka flow scenario. 

 

Figure 54. An example from a Kafka message, which the service can read from message bus 
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In addition, Figure 55Error! Reference source not found. contains an example of a produced 
message from the service. The field recipients can take values CERTH_ONTOL and 
CENTRIC_DECISION. Similarly with the consumer messages from Figure 54Error! 
Reference source not found., the SOURCE_NAME can take the aforementioned values. 

 

Figure 55. An example from a Kafka message, which the service can produce to message bus 

The service forwards the messages from the mission drones, object detection, abnormal 
behavior, underwater vehicle services and mobile and social data service to other services 
belonging in TOPIC_02. In particular, it sends the messages from mobile and social data 
service if and only if a keyword from a list of the predefined alert keywords exists in the Twitter 
text. More information for the alert keywords list is given in Section 4.1. Furthermore, the 
service extracts visual features from data of object detection, abnormal behaviour and 
underwater vehicle services, temporal features from data of mission drones, object detection, 
abnormal behaviour, underwater vehicle and mobile and social data services, and spatial 
features from data of object detection and abnormal behaviour services using the 
corresponding feature extractor. After that it computes the hash codes of each available 
modality and saves all the metadata to the MongoDB. Apart from that the service computes 
visual similarities for UUV and UAV data to queries from decision support service. It returns 
the most relevant to a given query results in a list.  

The data from Kafka messages, which are received from the consumer are stored in a 
MongoDB. A different collection corresponds to a different message. The service uses eight 
collections in the MongoDB. The collections are ACCELI_MISSION, CERTH_ACT, 
CERTH_OBJ, CERTH_OBJ_QUERIES, IDMG_FACE, OMST_UUV, OMST_UUV_QUERIES 
and SIMAVI_MOBILE. More information of each collection is given in Section 4.1. Figure 
56Error! Reference source not found. illustrates the framework of the overall service 
architecture. It consists of two parts, one is the Kafka architecture and the other one is the 
database architecture with additional procedures on each part. The Kafka part contains the 
read and write messages via Message Bus, while the database inserts and retrieves data from 
the MongoDB. The service is dockerised and is connected via Kafka with other services. 
Docker deploys a new application container and reduces the execution overhead of each 
service. 
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Figure 56. Example with the overall architecture of the service 

7 Conclusions 

In this deliverable a description of the BiasHash framework and the Integration Layer and 
Multimodal Indexing service has been included. Then, a concise presentation of the state-of-
the-art technologies on multimodal retrieval using hashing is presented and the presentation 
of the proposed framework is presented in detail. Furthermore, several public datasets and 
ISOLA datasets are presented and experiments are realized on these datasets in order to 
conclude on the efficiency of the method. In summary, the results so far are quite satisfactory. 
Apart from that, a problem was the unavailability of public UUV data. Therefore, a method is 
used that computes the differences of UUV data in feature level.  

Finally, the framework proposed is transformed into a service that is integrated into ISOLA 
system and the basic procedures related to introduction of data into the service through Kafka 
and the storing of interim data into a MongoDB are explained. 

As next steps no additional experiments on ISOLA dataset will be performed. However more 
effort on the dockerisation of the service to be uninterrupted as well as the integration of the 
service to the ISOLA project will be allocated. 
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